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Introduction

Large scale neural networks are highly over-parameterized.

However, specific optimization algorithms take us some special
global minima.
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Introduction

Example

Linear regression (under-determined model) - minimum l2 solution

Linear logistic regression (linearly separable) with gradient descent
- hard margin support vector machine solution

Linear logistic regression (linearly separable) with coordinate
descent
- maximum l1 margin solution
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Introduction

Changing to a different parameterization of the same model class
changes implicit bias.

(Ex 1. Fully connected, Convolutional)

(Ex 2. Optimizing w , β)

Changing the optimization algorithm changes implicit bias.

(Ex. Gradient descent, Coordinate descent)

5



Table of Contents

1 Introduction

2 Multi-layer Linear Networks

3 Main Results

4 Discussion

6



Multi-layer Linear Networks

7



Multi-layer Linear Networks

Linear convolutional network

We consider 1-dim circular conv network. Each non-output layer
has D units (same as the input dimensionality)
Circular convolutional operation parameterized by full width filters
with weights

[
wl ∈ RD

]L−1
l=1 .

hl [d ] =
1√
D

D−1∑
k=0

wl [k]hl−1[(d + k) mod D] := (hl−1 ? wl) [d ]

The output layer is fully connected.
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Multi-layer Linear Networks

A mapping P :W → RD that maps the input parameters w ∈ W
to a linear predictor in RD , such that the output of the network is
given by fw(x) = 〈x,P(w)〉.

For fully connected networks, Pfull (w) = w1w2 . . .wL,

For convolutional networks, Pconv (w) =(((
w↓L ? wL−1

)
? wL−2

)
. . . ? w1

)↓
, where w↓ denotes the flipped

vector corresponding to w given by w↓[k] = w[D − k − 1] for
k = 0, 1, . . . ,D − 1.
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Multi-layer Linear Networks

Objective for training network

min
w∈W

LP(w) :=
N∑

n=1

` (〈xn,P(w)〉 , yn) (1)

is equivalent to the following optimization over β = P(w)

min
β∈RD

L(β) :=
N∑

n=1

` (〈xn,β〉 , yn) (2)

But optimizing over w leads to different classifiers compared to
optimizing over β directly.
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Multi-layer Linear Networks

Consider problem (1) and (2) on a linearly separable dataset using
the logistic loss.

Global infimum of L(β) is 0, but not attainable by any finite β.

Want to find the direction β
∞

= lim
t→∞

β(t)∥∥β(t)
∥∥ .

If this limit exist we say that β(t) converges in direction to the limit
direction β

∞.
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Multi-layer Linear Networks

Soudry et al. studied this implicit bias of gradient descent on (2)
over the direct parameterization of β.

In this paper, we study the behavior of gradient descent on (1) for
linear fully connected or convolutional networks.

Want to find the direction β
∞

= lim
t→∞

P
(
w(t)

)∥∥P (w(t)
)∥∥
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Main Results

Assumptions.

In the following theorems, we characterize the limiting predictor
β
∞

= limt→∞
β(t)

‖β(t)‖ under the following assumptions:

1. w(t) minimize the objective, i.e., LP
(
w(t)

)
→ 0.

2. w(t), and consequently β(t) = P
(
w(t)

)
, converge in direction to

yield a separator β∞ = limt→∞
β(t)

‖β(t)‖ with positive margin, i.e.,

minn yn
〈
xn,β

∞
〉
> 0.

3. ∇βL
(
β(t)

)
converge in direction.

(+) The phase of the Fourier coefficients β̂(t) of the linear
predictors β(t) converge coordinate-wise.
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Main Results

Theorem 1 (Linear fully connected networks).

For any depth L, almost all linearly separable datasets {xn, yn}Nn=1,
almost all initializations w(0), and any bounded sequence of step
sizes {ηt}t , consider the sequence gradient descent iterates w(t) for
minimizing LPfull (w) in (1) with exponential loss over L -layer fully
connected linear networks.

β
∞

= lim
t→∞

Pfull
(
w(t)

)∥∥Pfull
(
w(t)

)∥∥ =
β∗`2∥∥∥β∗`2∥∥∥ ,

where β∗`2 := argmin
w
‖β‖22 s.t. ∀n, yn 〈xn,β〉 ≥ 1
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Main Results

Theorem 2a (Linear Convolutional Networks of any Depth).

For any depth L, the limit direction β
∞

= limt→∞
Pconv (w(t))
‖Pconv (w(t))‖ is

a scaling of a first order stationary point of the following
optimization problem,

min
β
‖β̂‖2/L s.t. ∀n, yn 〈β, xn〉 ≥ 1

where β̂ ∈ CD denote the Fourier coefficients of β, and the `p

penalty given by ‖z‖p =
(∑D

i=1 |z [i ]|p
)1/p

is a norm for p = 1 and
a quasi-norm for p < 1.
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Discussion

• Merely changing to a convolutional parameterization
introduces radically different bias.

• For convenience, we studied one dimensional circular
convolutions.

• These results can be directly extended to higher dimensional
input signals and convolutions.

• When using convolutions as part of a larger network, with
multiple parallel filters, max pooling, and non-linear
activations, the situation is of course more complex, and we do
not expect to get the exact same bias.

• Another important direction for future study is understanding
the implicit bias for networks with multiple outputs.
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Q & A

Thank you for listening.

btd63@snu.ac.kr
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